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Pulse mode sonar operation is analyzed under the

physical hypotheses that
The medium is a stationary homogeneous fluid.
. Both the sonar system and the scattering objects
< are stationary.

. The scattering objects are rigid bodies.

The scattering objects lie in the far fields of the
transmitter and receiver.

It is shown that if the sonar signal waveform in the far field is

s(|x|] - t,0

- , x=|x|6

then the sonar echo waveform in the far field is

e!IXI = t!e! x = ‘X|6

Ix] E

where

e(t,0) = Re %-I: w exp(itw) J T+(w9,w6')§(w,6')de'dm .
[67]=1

Here S(w,0) is the Fourier transform of s(t,08) with respect to
T and T+(w6,me') is the differential scattering cross section of

the scattering objects.
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§1. INTRODUCTION. This paper deals with pulse mode sonar echo prediction; that
is, the calculation of sonar echoes when the characteristics of the transmitter,

scattering objects and ambient medium are known. The physical hypotheses are

+ The medium is a stationary homogeneous unlimited fluid.
+ Both the sonar system and the scattering objects are stationary.

« The scattering objects are rigid bodies.

The analysis is based on the theory of scattering for the wave equation developed

in the author's monograph [5]. The principal result of this paper is an asymptotic
calculation of the echo waveform, valid when both transmitter and receiver are in
the far-field of the scatterers. The results show that, in this approximation,

the dependence of the echo waveform on the scatterers is determined by the S-matrix
of scattering theory. The work is a sequel to the author's article [6] where

similar results are derived for plane-wave signals.

THE_BOUNDARY VALUE PROBLEM. 1In what follows x = (X;,X,,X5) € RS denotes the

coordinates of a Cartesian system fixed in the medium and t € R denotes a time
coordinate. The acoustic field is characterized by a real-valued acoustic potential

u(t,x) which is a solution of the wave equation

2
1.1) ?..g - v2u = £(t,%)
ot

The function f , which characterizes the transmitter, will be called the source
function. The scattering of a single pulse of duration T , emitted by a
transmitter localized near a point Xy will be analyzed. Hence, the space-time

support of f is assumed to satisfy
(1.2) suppf C {(t,¥)] ty<t<t,+T and lx-x0| < §y)

where 8o and t, are constants. The scatterers are represented by a closed

0




bounded set T CR3 with complement Q = RS-I‘ . The common boundary 3TI = 93Q

is assumed to be a smooth surface. It will be convenient to let the origin of

coordinates lie in T and

(1.3) rc{x| |x| <s}
It is also assumed that

(1.4) § + 6 < Ixol

(the transmitter and scatterers are disjoint) and
(1.5) T < |xp|-8-6,

(the sources cease acting before the signal reaches the scatterers).

The total acoustic field produced by the transmitter in the presence of the
scatterers I is the solution u(t,x) of (1.1) in RxQ that satisfies the

boundary condition

(1.6) =V evu=0

¢

for (t,x) € Rx3Q , where vV is a normal to oQ , and the initial condition

1.7) u(t,x) =0 for t<t, and x€ Q

0

The corresponding signal field uo(t,x) , generated by f(t,x) when no scatterers

are present, is given by the retarded potential

(1.8) w9 = 7 | : forr ) g

where dx' = dxidxédx:'5 . The sonar echo us(t,x) produced by the source function




f and the scatterers I is defined by

15 ~

- 2 | &' o o
(1.9) us(t,x) u(t,x) uO(t,x) S tER . xE0 / a: & ;/ .
&

Both supp uo(t,.) and supp u(t,+) are contained in {xI Ix-xol < t-t, +\66}\\

which is disjoint from I for t-t;+ ¢, < |xo|-6 . It follows that
(1.10) u (t,x) = 0 for t<t,+ |x0|"6-60 and x € Q

The goal of this paper is to calculate us(t,x) , especially in the far field
(]x] > 1) and to analyze its dependence on the source function f and the

scatterers T .

§2. THE WAVE OPERATORS AND PULSE MODE SONAR ECHO STRUCTURE. The starting point

for the calculation of us(t,x) below is a construction of u(t,x) in the Hilbert
space LZ(Q) . To describe it let
(2.1 L@ = (u)|Pux) € L) for 0< |a| <m}
o T2 P W M
where o = (al,az,as) , Ja) = gty tag and D~ =3 /ax1 X, X5 . Then the

operator A : LZ(Q) - LZ(Q) defined by
(2.2) D(A) = L2(®) N fulou/av = 0 on 30} ,

(2.3) Au = ~v2u for all u € D(A)
is selfadjoint and non-negative; see [5] for details. The solution of the initial-
boundary value problem (1.1), (1.6), (1.7) is given by Duhamel's integral [6]:

t

(2.4) u(t,e) = J a2 siae-0a
t

V2yer,o)dr , t > %

0




R PSR TR T T e ™)

In particular, for t > t0 + T

(2.5) u(t,*) = I

where

0
(2.6) v(t,s) =i J

and

2.7

In the special case where Q = R3
by Ay . Thus A : L, » L, , defined by D(Ag) = LZR%) and A= -au,
in LZCR:”) and the signal uo(t,x) is given by .

is selfadjoint

(2.8)

where

(2.9)

and

(2.10)

To compare u(t,x) and uo(t,x) introduce the operator J : LZ(Q) + LZ(RS)

defined by

t0+T

t

. *5

uo(t,-) = Re{vo(t,o)} , t > to + T

vo(t,-) = e:cp{-itA(1)/2}110

A Y2 gince-0)aY 23 £(x, ) dr

A Y 20 (-i (t-1)AY 2 £ (1, Y ar

Re{v(t,*)}

exp{-itAI/ 21

AY? explinal/2y(x, ) dr

(no scatterer) the operator A will be denoted s

A[')l/2 exp{i‘rAg‘)/z}f('r,-)dr

i
|
g
|
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ji)hix) for XxEQ
(2.11) Jh(x) =
0 for x€R-Q

where jeCm(RS) ,0<j(x) <1, jx) =1 for |x| >4 and j(x) =0 ina
neighborhood of T . J is a bounded operator with bound 1JI =1 . It will be
convenient to extend the definition (1.9) of u by defining us(t,x) = Re{vs(t,x)}

where

(2.12) v (£,x) = V() -Vy(t,X) , tER , X ER’
The calculation of the far field form of us(t,x) will be based on the
theory of wave operators as developed in [5]. The wave operators W, and W_ are

defined by the strong limits

1/2

explitA)/ 217 expf -ital/%y

(2.13) o a8 lim

+ t 1w

It is shown in [5] that these limits exist and define unitary operators

W, : Ly(Q) - LZ(R‘-‘) . It follows that for each h € L,(Q)

1/2

(2.14) Jv(t,+) = J exp{-itA"" “}th = exp{-itAtl)/z} W.h + ot(l) , t*+

where Ot(l ) denotes an LZ(RS) -valued function of t that tends to zero in

LZ(RS) when t »® . (2.14) and (2.9) imply that
(2.15) v (t,") = expl-itA" 2 (W h-h.) +0,(1) , t »
i - 0 e t !

This result is used below to calculate the far field form of us(t,x) = Re{vs(t,x)} g
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§3. THE FAR FIELD APPROXIMATION AND THE SCATTERING OPERATOR. The scattering

operator for the scatterer T is the unitary operator S in LZ(RSJ defined by

(3.1) s = wuw

where W’_‘ denotes the adjoint of W_ . A connection between S and the
approximation (2.15) will be derived by calculating the relationship between h
and h, . Equation (1.10) implies that v_(t,x) =0 for t,+T<t<t,+ |x0|-4'5-¢50

0
and x € R3 . It will be convenient to choose

(3.2) ty = -Ixgl + 8 + 6

so that the arrival time of the signal at T is non-negative; see (1.10). With

this convention

RN Ty M o

(3.3) J exp{-itA™ “}h = exp{ itA) thy for t; <t<0
where

(3.4) t1=t0+T=-|x0|+60+6+‘r

Taking t =0 in (3.3) gives Jh = ho while taking t = t; gives

(3.5) explit, A/ 21 expt-it, A 3h = g

The scatterer I is in the far field of the transmitter if |x0| > 1 or, by (3.4),

t, << -1 . Combining this with (3.5) and the definition (2.13) gives

1

(3.6) b= B ® St s Ixpl +




' where o, (1) is an LZ(RS) -valued function of X, that tends to zero in LZIRS)
0

when |x0| + o . Multiplying (3.6) by S gives

+

R (3.7) W,h = Shy +oxoug , Ixgl >

because W*W =1 (W is unitary). Combining (3.7) and (2.15) gives

(3.8) v (t,") = expl-itA}/ 2}(S-1)hy + 0 (W*o, (1)

Note that the term o (1) tends to zero in L2(R§) when Ixol + o  uniformly

0
in t because exp{-itAé/z} is unitary. Equation (3.8) shows that, in the far
field approximation, the dependence of the echo waveform on the scatterer is

determined by the scattering operator.

The approximation (3.8) is used in §6 to derive an explicit integral formula
for the far field echo waveform. The derivation is based on a known integral
representation for S , fornulated in §4, and the theory of asymptotic wave

functions of [5] which is summarized in §5.

§4. THE STRUCTURE OF THE SCATTERING OPERATOR. The steady-state theory of

scattering and associated eigenfunction expansions for A are reviewed briefly
in this section and applied to the construction of the scattering operator for

¥

. Ao

and the plane waves

is a selfadjoint operator in L2(R3) with a purely continuous spectrum
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(4.1) wy (x,p) = (2m) exp{ix-p} , p €

RS

are a complete family of gensralized eigenfunctions. The corresponding eigen-

function expansion is the well-known Piancherel theory of the Fourier transform

(see [5], Ch. 6).

Generalizations of the Plancherel theory to acoustic scattering by bounded

objects were first given by N. A. Shenk [2] and Y. Shizuta [4].

the generalized eigenfunctions are the distorted plane waves

which are characterized by the properties that w,(x »P)

(i.e., ¢w,(+,p) € D(A) for all ¢ € C‘S(RZ’)) :

(4.3) @%+]p|Hw, (x,p) = 0 for x €@
(4.9 —r—Ta"f oI = o2 , Ix]
o — Fi = , |X| >
9|x P, Ix|

4.2) w,(x,p) = wy(x,p) *+ Wi(x,p) , XE€Q, pER’

In this work

is locally in D(A)

For the existence, uniqueness and construction of wi(x,p) see [2,3,4,5,6].

Physically, wf_ (x,p) is the steady-state scattered field produced when the

plane wave (4.1) is scattered by I' . It has the far field form [5,6]

(Hilpl[x]

3 = 1
(4.5) W, (%,p) = =gz Tu(Ipl0sP) * 0(Ix

lz) ’ le malil

where 0 = x/|x| . T,(p,p') , the scattering amplitude or differential scattering

erose section of T , is defined for all p and p'

and has the symmetry properties

in R

3

such that

lpl = [p']

i




S ———————

1 (4.6) T,(.p') = T,(p',-p) = T, (0,7 = T,(P, )

where the bar denotes the complex conjugate.

‘ The connection between S and T - (p,p') 1is based on the eigenfunction
} | expansion theorem for A . The latter states that for all h€ L, Q) the

b b limits

2 @.7 B0 = @00 = L&) 1in | TP hedx
M~> %

exist, where Q=20 {x| |x] <M} , and

(4.8) h(x) = L,(R)-1im j w, (x,p)h, (p)dp
L lp| <M

Moreover, the operators ¢ _ . L2 ) ~» L2 (RS) are unitary and for each “ounded

measurable function ¥(A) on A =0

2
(4.9 (¢,¥(Ah) (p) = ¥({p|7)e,h(p) :
The Fourier transform will be denoted by ;
(4.10) h(p) = (#h) (p) = L,®")-Lin Wo5P) h(x)dx

M- o Ix <M

R e

An exposition of the eigenfunction expansion theory is given in [S]. In what

follows the relations (4.7), (4.8) are written

(4.11) h, (p) = j W, (,p) h(x)dx
Q




(4.12) h(x) = J w, (x,p)h, (p)dp

R?

for brevity. However, the integrals are not convergent, in general,and (4.11),

(4.12) must be interpreted in the sense of 4.7), (4.8).

The wave operators W, defined by (2.3) are known to have the representations
[5]
(4.13) W o=0% , W =00

Combining (4.13) and (3.1) gives the representation

(4.14) s=wW =06'So

+

where the operator

(4.15) S=00

is called the S-matrix for the scatterer T . The operator S$-1 has the inte-

gral representation

(4.16) G-1he) =——12{772(;) | 7., Iplenshclplenae
™
2
S

whose kernel the differential scattering cross section of T . The integration

2 3

in (4.16) is over the points 6' of the unit sphere S® in R" . The first

proof of (4.16) for acoustic scattering is due to Shenk [2].

§5. PULSE MODE SONAR SIGNALS IN THE FAR FIELD. The signals uy(t,x) origi-

nate in the region Ix-xol <3 and reach points x in the far field, charac-




<11 -

terized by |x-x0| >> 1 , after a time interval of magnitude comparable with
|x-x0| . Hence the far field form of u,(t,x) coincides with its asymptotic
form for large t . The latter is provided by the theory of asymptotic wave
functions developed in [5]. The theory is applied here to determine the far

field form of uo(t,x) .

The complex wave function Vo(t,x) defined by (2.9), (2.10) has the Fourier

representation

(5.1) V(e = 2m Y2 [ expi (x-p-tlp|) 1y (p)ep
3
R

Equations (2.10) and (4.9) imply that

(5.2) ho®) = 202 ijp| " E¢-[pl,p)
where
(5.3) ?(w,p) = (2'fr).2 I exp{-1i(tw+x-p) H(t,x)dtdx
4
R

is the 4-dimensional Fourier transform of f . Note that (5.2) suggests the

concept of a non-radiating source funetion. £ 1is said to be non-radiating if

Shanl &l . 4
(5.4) f(t,x) = 3 uO/at -V Uy » SUpp U bounded in R
In this case ﬁo(m,p) exists and (5.4) is equivalent to

(5.5) £w,p) = (Ip1%-0H)iy(w,p)

Equations (5.2) and (5.5) imply ﬁo(p) = 0 and hence uo(t,x) =0 for

t > to + T,




=12~

The asymptotic wave function associated with uo(t,x) = Re{vo(t,x)} is
defined by

(5.6) u:(t,x) = s(|x|-t,0)/|x] , x = |x|o

where s € Ly® x S) is defined by (see [S], Ch. 2)

Re {(zn)‘l/ ‘ T exp{itm}(-iw)flo(we)dm}
0

s(t,0)

(5.7)

Re { I exp{itm}%(-m,me)dm}
0

Direct calculation of s(t,8) from (1.8) yields the alternative representation

(5.8) s(t,0) = ZIFI £(-T+0+x,X)dx

RS

It was shown in [5] that u; describes the asymptotic behavior of U, in

Lzms) for to>ow:
(5.9) uy(t,s) = uy(t,) +0,(1) , t+=

The integral
(5.10) E(u,K,t) = %—j {IVu(t,x)I2 + (au(t,x)/at)z}dx
K
may be interpreted as the acoustic energy in the set KC R3 at time t .

It was shown in [5] that if h, € L%CRZ’} then u;(t,x) converges to uy(t,x)

in energy when t-+« . More precisely,

Jd
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(5.11) auo(t,x)/axj = u:’j (t,x) +0. (1) , t+=, j=0,1,2,3

where Xy = t .

(5.12) u:’j(t,x) = sj(lxl-t,e)/|x|

(5.13) so(r,e) = -3s(t,0)/31

and

(5.14) Sj(T,e) = -ejso(r,e) for §=1,2,5

The result (5.11) was used in [5] to calculate the asymptotic distribution

of energy in cones

"

6| r>0, 8€C,CS%

(5.15) C={x 0

Applying the results to the signal uo(t,x) generated by f(t,x) gives

(5.16) B(ug,Coe) = Lim Bu,C,t) = w | 1C-pl,p) 1 ep
to
C

In particular, the total signal energy introduced by the source function f is

(5.17) E(ugR>,) = m I |£C-Ipl,p) | %dp
3
R

§6. PULSE MODE SONAR ECHOES IN THE FAR FIELD. Equation (3.8) implies that

the echo us(t,x) satisfies




1~

(6.1) u_(t,*) = Refexp(-itA}/?)(S-1)hy} +0, (1) 49,

The first term on the right has the same form as the signal but with h0 re-

placed by (S-l)h0 . It follows from the results of §5 that

(6.2) u (t,x) = u(t,x) +0 (1) +ox0(1)

where

(6.3) u_(t,x) = e(|x|-t,0)/|x] , x=|x|e

and

(6.4) e(t,0) = Re{(2m) /2 Texp(im)(-iw)((s-l)ho)‘(we)du}
0

Now by (4.14)

(6.5) ((5-Dhy) " = 8(5-1e*shy = (B-Dhy;

and hence by (4.16)

(6.6) ((S-1)hy) " (we) .2_(2_1‘)91771 T, (00,08 " Yo (w8 ) do"
118
2
s

Combining (6.4) and (6.6) gives

6.7 e(t,0) = 4 Re { I exp (itw)w’ J T+(we,we')ﬁ0(we')de'dw}
0 2
s

Finally, by (5.2)

(6.8) e(x,0) = ;(-z_)!m Re {i j e it | T*(we,me')g'(-w,we')de'dm}
™
0 o2
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Equation (6.2) implies that u: gives the far field form of ug . For

]xol >> 1,T is in the far field of the transmitter and the term o (1) is
0

small, uniformly for all t . For receivers in the far field region |x|>>1
for T, the echo us(t,x) arrives at times t >> 1 and hence the term ot(l)

is small.

§7. CONCLUDING REMARKS. Actual sonar transmitters do not, of course, generate

signals by means of a source function f(t,x) . However, the purpose of a
well designed transmitter is to generate a signal with a prescribed waveform

s(t,8) . Now

A 1 ¥ " 1 1/2A
(7.1) S(L\),e) = (Z—w)'m J exp(‘le)S(T,e)dT = [7] f(-w,we)

-0

(see (5.7)) and hence

exp(itw)w J T+(m6,w6')g(m,6‘)d6‘dm}
SZ

(7.2) e(t,8) = Re { :

S— 8

In particular, the transmitter characteristics influence the echo waveform only
through s(t,0) . Hence, (7.2) is applicable to real transmitters with known

waveforms s(t,6) .

It is known that T, (w6,w8') is a meromorphic function of w with poles
in the lower half plane [3]. The other functions in the integrand of (7.2) are
entire holomorphic functions. Hence, the integral in (7.2) can be transformed
bv deforming the contour of integration in the complex w-plane. This leads
to an expansion of the echo waveform of the type occurring in the singularity

expansion method [1].
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